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Rabies virus infection: An update
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There are still many unanswered questions in the pathogenesis of rabies, but
recent progress has been made. During most of the long incubation period of
rabies, the virus likely remains close the site of viral entry. Centripetal spread
to the central nervous system and spread within the central nervous system
occur by fast axonal transport. Neuronal dysfunction, rather than neuronal
death, is responsible for the clinical features and fatal outcome in natural
rabies. Recent work has changed our perspective on the ecology of rabies virus
under particular circumstances in certain species. Hopefully, advances in our
understanding of rabies pathogenesis will lead to advances in the treatment of
this dreaded disease. Journal of NeuroVirology (2003) 9, 253–258.
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Introduction

Rabies is normally a rapidly fatal neurological dis-
ease and to date therapeutic efforts in humans have
proved futile except in rare cases in which rabies vac-
cine was administered prior to the onset of clinical
disease (Jackson, 2002a; Jackson et al, 2003). A better
understanding of rabies pathogenesis may be helpful
in making future advances in therapy. In this review,
selected topics in the pathogenesis of rabies, includ-
ing the events at the site of viral entry, transport of
rabies virus to the central nervous system (CNS), neu-
ronal dysfunction and death, and nonfatal outcome of
infection will be discussed. A comprehensive review
on rabies pathogenesis has recently been published
(Jackson, 2002b).

Events at the site of viral entry

There is a long and variable incubation period in hu-
man and animal rabies, usually lasting 20 to 90 days,
but sometimes it lasts longer than 1 year (Smith et al,
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1991). Although there is uncertainty about the pre-
cise events during this incubation period, a delay
in the movement of rabies virus likely occurs at the
site of viral entry or inoculation. The best experimen-
tal animal studies to date, examining the events that
take place during the incubation period, were per-
formed in striped skunks using a Canadian isolate
of street rabies virus obtained from skunk salivary
glands (Charlton et al, 1997). Studies performed us-
ing reverse transcriptase–polymerase chain reaction
(RT-PCR) amplification showed that viral genomic
RNA was frequently present in the inoculated mus-
cle (found in four of nine skunks), but not in ei-
ther spinal ganglia or the spinal cord, when skunks
were sacrificed 62 to 64 days post inoculation. Im-
munohistochemical studies performed prior to the
development of clinical disease showed evidence of
infection of extrafusal muscle fibers and occasional
fibrocytes at the site of inoculation. Although it is
unclear, the infection of muscle fibers may be a crit-
ical pathogenetic step for the virus to gain access to
the peripheral nervous system. Rabies virus binds to
nicotinic acetylcholine receptors at the neuromuscu-
lar junction (Lentz et al, 1982), and recent studies
using nerve-muscle cocultures indicate that the neu-
romuscular junction is the major site of entry into
neurons (Lewis et al, 2000). Two additional putative
rabies virus receptors have recently been reported:
the neural cell adhesion molecule (Thoulouze et al,
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1998) and the p75 neurotrophic receptor (Tuffereau
et al, 1998). The neural cell adhesion molecule is ex-
pressed in three major isoforms and expression oc-
curs in adult muscle and at the neuromuscular junc-
tion (Moscoso et al, 1998; Polo-Parada et al, 2001).

Studies in rodent models with fixed rabies virus
strains indicate that rabies virus is capable of direct
entry into peripheral nerves without a replicative cy-
cle in extraneural cells, which is associated with a
short incubation period (Shankar et al, 1991; Jackson,
2002b). This mechanism of viral entry may rarely oc-
cur under natural conditions, such as after multiple
bites to the head and neck, associated with very short
incubation periods. Studies in the highly susceptible
suckling hamster model also showed early infection
in neuromuscular and neurotendinal spindles (Mur-
phy et al, 1973), but involvement of these structures
has not been demonstrated in more natural models
with long incubation periods.

The vast majority of human rabies cases that occur
without a history of an exposure are thought to be
due to unrecognized or forgotten bites, and molecu-
lar characterization of the rabies virus variants has
indicated that in the United States they are most fre-
quently from bats, particularly silver-haired bats and
eastern pipistrelle bats (Noah et al, 1998). Experimen-
tal studies on the silver-haired bat virus indicate that
the virus replicates well at lower than normal body
temperatures (34∼C) and is associated with higher in-
fectivity in cell types present in the dermis, includ-
ing fibroblasts and epithelial cells, than with coyote
street virus (Morimoto et al, 1996). Hence, the silver-
haired bat virus may be adapted for efficient local
replication in the dermis, which could explain the
success of this variant. However, after superficial ex-
posures it is unclear how or at precisely what sites the
virus invades peripheral nerves in the skin or subcu-
taneous tissues.

Transport of rabies virus to the CNS

Colchicine, a microtubule-disrupting agent active for
tubulin-containing cytoskeletal structures, is an ef-
fective inhibitor of fast axonal transport. Colchicine
was applied locally to the sciatic nerve in rats us-
ing elastomer cuffs in order to obtain high local con-
centrations of the drug and avoid adverse systemic
effects, and the propagation of rabies virus was pre-
vented, providing strong evidence that rabies virus
spreads from sites of peripheral inoculation to the
CNS by fast axonal transport (Tsiang, 1979). Rabies
virus spreads in peripheral nerves and in the CNS
within axons by fast axonal transport at a rate of 12 to
100 mm per day (Kucera et al, 1985; Lycke and Tsiang,
1987; Tsiang et al, 1991). Rabies virus has been used
as a neuroanatomical tracer in order to define circuits
of synaptically linked neurons in rodents and pri-
mates, and these in vivo studies have provided evi-
dence that axonal transport of rabies virus occurs ex-

clusively in the retrograde direction (Tang et al, 1999;
Kelly and Strick, 2000). Two recent reports have pro-
vided evidence that the rabies virus phosphoprotein,
particularly involving amino acid residues at posi-
tions 143 and 147 (Poisson et al, 2001), interacts
strongly with the 10-kDa cytoplasmic dynein light
chain (LC8) (Jacob et al, 2000; Raux et al, 2000). LC8 is
a component of both cytoplasmic dynein and myosin
V and is important in both microtubule-directed or-
ganelle transport and in actin-based vesicle transport
in axons. However, the role of the interaction of the
rabies virus phosphoprotein and dynein for axonal
transport of the ribonucleocapsid complex has not
yet been demonstrated. Mutants with a deletion in
amino acid residues of the phosphoprotein encom-
passing a conserved LC8-interacting motif and simul-
taneous substitution of the arginine at position 333 of
the glycoprotein showed neuroattenuation in mice
(Mebatsion, 2001). Interestingly, mutants with dele-
tions in the LC8 binding region of the phosphoprotein
remained as pathogenic as their parent virus after in-
tramuscular inoculation of suckling mice, indicating
that LC8 is actually dispensable in young mice for the
spread of pathogenic rabies virus from a peripheral
site to the CNS (Mebatsion, 2001).

In studies using a rabies virus glycoprotein-
deficient recombinant rabies virus, Etessami et al
(2000) recently demonstrated that the glycoprotein
is important for the transsynaptic spread of rabies
virus between neurons. Yan et al (2002) examined
the role of the rabies virus glycoprotein in determin-
ing the topographic distribution of rabies virus in-
fection 7 days after stereotaxic inoculation of virus
into the hippocampus of rats using a variety of ra-
bies virus strains and recombinant viruses, includ-
ing a rabies virus recombinant constructed using the
vesicular stomatitis virus glycoprotein. With all of
the recombinant viruses, the viral distribution was
similar to that of parental viruses from which the
glycoprotein was derived. Hence, further evidence
is provided that the rabies virus glycoprotein exerts a
very important influence on the distribution of rabies
virus infection in the nervous system. Mazarakis et al
(2001) have also recently demonstrated that rabies
virus glycoprotein-pseudotyped lentivirus (equine
infectious anemia virus)–based vectors enhance gene
transfer to neurons by facilitating retrograde axonal
transport. Hence, a variety of studies emphasize the
importance of the rabies virus glycoprotein in the
uptake, transport, transsynaptic spread, and topo-
graphic distribution of the infection in the nervous
system.

Neuronal dysfunction and death

Natural rabies is normally characterized by severe
neurologic signs and fatal outcome with relatively
mild neuropathologic changes in the CNS, support-
ing the idea that neuronal dysfunction, rather than
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neuronal cell death, must play an important role in
producing the disease (Jackson, 1997; Iwasaki and
Tobita, 2002; Jackson, 2002b). A variety of experi-
mental studies in rabies virus infection have inves-
tigated possible abnormalities in neurotransmission
involving acetylcholine (Tsiang, 1982; Jackson, 1993;
Dumrongphol et al, 1996), serotonin (Bouzamondo
et al, 1993; Ceccaldi et al, 1993), and μ-amino-n-
butyric acid (GABA) (Ladogana et al, 1994). Abnor-
malities of uncertain significance were found, but no
fundamental defect was demonstrated that explains
neuronal dysfunction in rabies. Dysfunction of ion
channels has been shown in rabies virus-infected
cultured mouse neuroblastoma NA cells with the
whole-cell patch-clamp technique (Iwata et al, 1999).
The infection reduced the functional expression of
voltage-dependent sodium channels and inward rec-
tifier potassium channels, and there was a decreased
resting membrane potential reflecting membrane de-
polarization. There was no change in the expression
of delayed rectifier potassium channels, indicating
that nonselective dysfunction of ion channels had not
occurred. The reduction in sodium channels and in-
ward rectifier potassium channels could prevent in-
fected neurons from firing action potentials and gen-
erating synaptic potentials, resulting in functional
impairment. Koprowski and coworkers (1993) have
hypothesized that nitric oxide neurotoxicity may me-
diate neuronal dysfunction in rabies. Induction of
inducible nitric oxide synthase mRNA (Koprowski
et al, 1993) and increased brain levels of nitric ox-
ide (Hooper et al, 1995) have been demonstrated in
rabies virus-infected rodents, but the significance of
these findings is uncertain. The role of nitric oxide in
rabies pathogenesis needs further study.

In vivo studies by Prosniak et al (2001) in mice
have shown that infection with fixed rabies virus re-
sulted in down-regulation of about 90% of genes in
the normal brain, at more than four-fold lower levels
by using subtraction hybridization. Only about 1.4%
of genes became up-regulated, including genes in-
volved in regulation of cell metabolism, protein syn-
thesis, and growth and differentiation. Determining
whether any of these changes have important biologic
significance will be very challenging.

Neurotropic viruses may cause cell death by ei-
ther apoptosis or necrosis (Griffin and Hardwick,
1999; Allsopp and Fazakerley, 2000; Fazakerley and
Allsopp, 2001). Apoptosis depends on synthesis of
macromolecules and requires energy, whereas necro-
sis is associated with energy failure. Each of these
forms of cell death is associated with typical mor-
phologic features. The challenge virus strain (CVS) of
fixed rabies virus has been observed to induce apop-
totic cell death in rat prostatic adenocarcinoma cells
(Jackson and Rossiter, 1997), mouse neuroblastoma
cells (Theerasurakarn and Ubol, 1998), and in mouse
embryonic hippocampal neurons (Morimoto et al,
1999). Morimoto and coworkers have observed that
variants that are more neurovirulent in adult mice

produce less apoptosis over a period of 72 h in pri-
mary hippocampal neurons than produced by less
neurovirulent variants (Morimoto et al, 1999). Promi-
nent apoptotic death of neurons has been observed in
the brains of mice of various ages inoculated intrac-
erebrally with the CVS strain of fixed rabies virus,
and immunosuppression of adult mice did not reduce
the apoptotic process (Jackson and Rossiter, 1997;
Jackson and Park, 1998; Theerasurakarn and Ubol,
1998). However, a role of the immune response in the
induction of apoptosis cannot be excluded, which
was demonstrated in paralyzed mice infected with
the attenuated Pasteur strain of rabies virus (Galelli
et al, 2000). Guigoni and Coulon (2002) observed
that primary cultures of CVS-infected purified rat
spinal motoneurons did not show major evidence of
apoptosis over a period of 7 days, whereas infected
neurons did not survive more than 2 days in crude
primary spinal cord cultures. This survival was not
dependent on the presence of factors in the culture
medium. In contrast, cultures of purified hippocam-
pal neurons showed apoptosis in over 90% of neu-
rons within 3 days. These results suggest that differ-
ent neuronal cell types respond differently to rabies
virus infection, and that the presence of glial cells
and/or neurons other than motoneurons are essential
for apoptosis of spinal motoneurons. Physical contact
with glia or synaptic contact with other spinal cord
neurons may be necessary for induction of apoptosis
in motoneurons, but not for apoptosis of hippocam-
pal neurons. However, apoptosis in infected cultured
cells, including embryonic cells, does not closely cor-
respond to what is observed in infected animals. Pe-
ripherally inoculated animals with CVS strains do
not show the prominent apoptosis that is observed
in neurons after intracerebral inoculation (Reid and
Jackson, 2001). Conflicting results have been reported
by different investigators with respect to the occur-
rence of neuronal apoptosis after intracerebral in-
oculation of different street (wild-type) rabies virus
variants in mice (Ubol and Kasisith, 2000; Yan et al,
2001). Hence, in rabies virus infection, there are com-
plex mechanisms involved in cell death or survival
of neurons both in vitro and in animal models us-
ing different viral strains and routes of inoculation.
Nevertheless, neuronal cell death is not prominent in
natural rabies, and, hopefully, a greater understand-
ing of the mechanisms involved in neuronal apopto-
sis in experimental models may provide insights into
the pathogenesis of neuronal dysfunction that occurs
in natural rabies.

Nonfatal outcome of rabies virus infections

Although rabies is usually considered a uniformly fa-
tal disease, it has been recognized that animals may
sometimes recover from rabies. The fundamental is-
sue is whether a “carrier state” can occur where a ra-
bies vector secretes infectious virus in the saliva and



Rabies virus infection
256 AC Jackson

remains healthy. This was initially reported in vam-
pire bats in the 1930s in Trinidad, but the methods
were inadequate (Pawan, 1936). Fekadu reported five
dogs that secreted virus for up to 72 months, although
these viruses had not caused human disease (Fekadu,
1972, 1975). Serotine bats in Spain were recently
observed to have RT-PCR–positive oropharyngeal
swabs, and, in many cases, simultaneous brain
samples were negative, suggesting viral clearance
from the brain but not from extraneural tissues
(Echevarria et al, 2001).

A recent study of rabies virus infection in spot-
ted hyenas in the Serengeti changes our perspective
on naturally occurring variations in rabies pathogen-
esis (East et al, 2001). In this study spotted hye-
nas were monitored in three social groups for pe-
riods of 9 to 13 years. Clinical rabies was never
observed. On the basis of rabies virus neutralization
antibody (VNA) titers, 37% (37 of 100) were found to
be seropositive and repeat studies in six indicated
that half of the seropositives became seronegative.
High-ranking hyenas had high VNA titers. They also
had high oral (open mouths licked by clan mem-
bers at rates of over twice an hour) and bite contact
rates, and they lived to an old age of over 4 years. Al-
though infectious rabies virus was not isolated from
saliva, almost half of the seropositive hyenas demon-
strated saliva positive for rabies virus RNA by RT-
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